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ABSTRACT 
 
In this paper, we discuss our findings ondetecting 
eye blink artefacts in brain activity using EEG. A 
test subject participated in a car driving simulation 
and his brain activity was captured during the 
experiment. While driving, stressful emotions 
were triggered in the participant, through steep 
curves and attention seeking billboards. Our 
research shows that detecting eye blinks is 
possible using a low cost EEG solution. We use 
the longitudinal differences of two prefrontal 
cortex sensors in combination with amplitude 
maps to classify eye blinks. We correlate eye blink 
frequency with experienced stress, observing 
higher frequency of eye blinks in stressful 
situations. Furthermore, we show that brain 
activity is significantly more active when doing 
mental calculation with eyes open as opposed to 
doing them with eyes closed. Results of this 
research could in combination with other stress 
detectors lead to applications to improve transport 
safety and support other areas where stress levels 
need to be monitored. 
 
INTRODUCTION 
 
The human brain is considered a black box by 
many scientists. Although we are able to model 
and explain some phenomena, the majority of the 
brain’s workings are still a mystery. The brain’s 
activity can be measured using detection of 
electrochemical signals, blood flow and possibly 
others. When looking at the electrochemical 
signals, a large problem is linking these signals 
with a specific activity, such as activating motor 
functions or solving math equations using mental 

calculations. It is even harder to generalize the 
interpretation of these associations, since brain 
activity can differ between different persons. In 
this paper we discuss our findings on detecting eye 
blinks of one test subject and correlate eye blink 
frequency with the experienced level of stress. We 
also present our findings on mental calculations 
with open and closed eyes, and their effect on 
brain activity. This line of research may be very 
useful to society. Human activities like driving 
vehicles could be made safer when being able to 
sense that the driver has irregular or fast eye 
blinks, indicating drowsiness or stress. There are 
numerous other applications where eye blink 
detection 
may be used to enhance stress monitoring. It also 
useful for the scientific EEG community since eye 
blink artifacts contaminate the EEG signal the 
most (Peterson, 1999). For our experiment we 
chose EEG as the technique to capture brain 
activity. Its detection technique is based on the 
electrochemical brain activity.  
It has excellent temporal resolution in contrast to 
blood flow techniques. such as fMRI and PET 
(Horlings, 2008). The high temporal resolution 
together with the low cost make EEG a great 
solution for our research. 
In our experiment we acquire brain activity using 
EEG equipment, convert and remove artifacts 
using software, extract and select features 
characteristic for eye blinks and finally classify the 
signal, using the selected features as eye blinks in 
the signal (figure 1). 
Two challenges have been identified for our work: 
• Detecting eye blinks in EEG signal 
• Isolating events to be able to link the eye blink 

frequency to the perceived level of stress 
For the detection of eye blinks we use techniques 
of the signal processing field to remove unwanted 
artifacts (like lateral eye movement which usually 
effects EEG nsors F7 and F8), background noise 

 



(which is captured using EEG sensors A1 and A2) 
and other noise. To isolate events we use a custom 
car driving simulation. 
 

 
Fig.1 Schematic overview of the research method 
 
1. Eye blinks 
Eye-blinks are an often unwanted feature found in 
EEG measurements, due to the eye lid muscles’ 
proximity to the posterior sensors Fp1 and Fp2 
(Yoo et. al. 2007). The signals measured from the 
muscles have a magnitude 2 much greater than the 
signals from the brain, and as such they often 
occlude essential data. Although several methods 
are available for detection and removal of eye-
blinks, their greater magnitude makes them more 
easily detectable than other features, both visually 
and analytically – they occur mostly in the 0.5-3 
Hz range of the power spectrum (Manoilov 2006). 
This paper is outlined using the following 
structure. First we have a brief look at previous 
research in this subject. Then the set-up and tools 
are discussed. Following, the paper goes into the 
actual conducting of the experiment and present a 
summary of the collected data. Finally, we analyse 
the data, extract result and come to a conclusion. 
 
RELATED WORK 
 
A lot of research has been done on detecting 
eyeblinks using specific features of the data, such 
as: 
 Cross-Correlation (Yoo et.al. 2007); this method 
is capable of detecting and removing eye-blink 
artifacts through average and cross-correlation 
features of the independent EEG components, 

 Power spectrum analysis (Manoilov 2006); this 
method exploits the lower amplitude signature 
coming from the Fp1 en Fp2 sensors, 

 EMCP (Hoffman 2008) and ICA (Hoffman 
2009) ; the EMCP method is based on regression 

while ICA is a blind source separation algorithm 
assuming statistically independent components. 

Areas in which EEG research concerning eye-
blinks has been done (Dharmawan 2006): 

• Clinical Research 
• Mental State Identification 
• Brain computing interfaces 
• Computer games 

 
TOOLS 
 
To conduct the experiment we used the TruScan 
32 EEG system from Deymed Diagnostics (see 
figure 2) with 19 electrodes placed according to 
the 10-20 placement standards (figure 3b). This 
solution from Deymed provides both the Brain 
Computer Interface as well as the capture and 
analysis software. We used Matlab and the EEG 
toolbox to further analyze these signals. 
1. Hardware 
The most important hardware components are 
listed below. For a full list of required hardware, 
see (Horlings, 2008) 
• EEG Cap, fitted with 19 electrodes, senses the 

brain activity, 
• Earlobe electrodes, these measure the 

backgroundnoise, 
• EEG Headbox, this box connects the cap with 

the computer. 
2. Software 
A. Data Acquisition 
Deymed’s TruScan Acquisition (TA) is used for 
the recording of the EEG signals. TA contains an 
overview of all electrodes and allows the test 
administrator to add markers and notes during a 
recording when significant events occur in the 
experiment. 
B. Data analysis 
Deymed’s TruScan Explorer (TE) is used for 
loading the captured EEG data and do basic 
filtering and analysis. Matlab is used to perform 
statistical analysis on the data. 
 
EXPERIMENT 
 
A. Set-up of the experiment 
In this experiment a test participant is required to 
drive a race car simulator while an EEG recording 
is made of his brain activity. The race car 
simulator contains a number of predefined race 
tracks.  

 



The test participant wears an EEG cap contains 19 
electrodes. These electrodes are connected to the 
TA recording software through the headbox and a 
pc adapter. The software is operated by the 
operator, who in real-time adds markings to the 
recordings at moments of interest. This can for 
instance be when a billboard appears in the race 
track simulation, or when the participant crashes 
the car. During the analysis of the recorded EEG 
data, the appearance and subsequent cognitive 
processing of the billboard can be correlated with 
measured brain activity. Figure 3a shows a test 
participant in the experiment set-up. 
 

 
 
Fig.2 Setup for the equipment used for the setup in 
all experiments 
 
 

 
 

 

 
 
Fig.3 The recording of an experiment in progress, 
with the participant wearing the TruScan 32 EEG 
cap (a) and the layout of the sensors (b) 
 
B. Description of the conducted experiments 
A number of experiments have been conducted, 
which can be divided into two groups. The first set 
of experiments (table I) consists of the participant 
driving on a track, either a 10 km long straight 
road, or three laps on a curved race track (figure 
5), optionally with or without billboards (figure 4). 
There are two variables which are expected to 
influence the participant’s performance and the 
resulting EEG recordings. The first variable 
indicates the type of track, straight or curved. 
 

 
 
Fig.4 Typical scene from the curved race track 
with billboards 
 
The second variable denotes the presence of 
billboards. Both tracks contain 10 billboards. 
These billboards are meant to distract the parti by 
either showing graphic pictures of car accidents, 
or, as in the case of our experiment, scarcely 
dressed females and shocking anti-smoking ads. 
Each track contained one billboard with a business 
ad, not containing any graphic content. On the 
straight road, the billboards are placed 
equidistantly, 100 meters apart, with the first 
billboard at 50 meters. At a speed of 70 km/h, 
billboards appear about every 50 seconds (table 
II). On this track, billboards can be sighted from 
60 meters away (equivalent to about 30 seconds), 
and their contents can be distinguished from 25 
meters. On the curved race track, the billboards are 
randomly placed, mostly near the more difficult 
sections of the track (figure 4, table II). 

 



 
 
Fig.5 The curved race track driven by the 
participant. Markers indicate locations of the 
billboards, if enabled. 
 
TABLE 1 
Experiments involving the participant in driving 
around a track 

 
 
The second set of experiments (table III) required 
the participant to perform a few simple tasks. The 
EEG recordings from these experiments may offer 
additional insights to the recordings from the 
experiments that were mentioned previously. 
Experiment 5 required the test participant to drive 
on a straight racetrack. 
 
TABLE 2 
Placement of billboards 
 

 
 

The test administrator would give simple 
commands such as 'change lane' or 'weave 
between the left and right lanes', and mark the 
recordings when these commands were given. 
Experiments 6 and 7 did not require the test 
participant to control a racetrack simulator. The 
participant was asked to relax and perform a few 
basic multiplications (such as 23 X 15). This 
experiment was conducted twice, once with the 
eyes open (experiment 6), and again with the eyes 
closed (experiment 7). 
 
TABLE 3 
Experiments involving the participant performing 
simple tasks 

 
 
C. Data recorded during the experiments 
Different features appear in the data that have been 
recorded during the experiment. The data is first 
filtered using a bandpass filter. Following previous 
research, we’ve used a high pass filter of 2 Hz and 
a low pass filter at 40 Hz (Horlings 2008). Using a 
high pass filter at 2 Hz makes the visual detection 
of the eye blinks much easier, while frequencies 
below this band are part of the Delta band and 
only occur in the brain during deep sleep 
(Horlings 2008). Frequencies above 40 Hz contain 
little to no activity, and are polluted with common 
interferences such as from the electrical net with 
AC currents at 50 or 60 Hz. For eye blink 
detection alone, the frequencies between 20 and 40 
Hz are not relevant, but we have included them for 
spotting other features of brain activity presented 
in section 5. 
 

 



 
 
Fig.6 Typical EEG pattern when driving on a 
straight road, without any billboards (experiment 
1) 
 
The data from the first experiment is used as 
reference data. The straight track required minimal 
corrective steering adjustments and the omission 
of billboards ensured no emotional responses were 
triggered (figure 4). The steering corrections 
showed a temporarily increase in variance in the 
measured signals between sensors fp1-f7 and f7-t3 
(steering to the right) and fp2-f8 and f8-t4 
(steering to the left). 
Important features of this experiment are the 
eyeblinks, as their frequency is used to measure 
the perceived level of stress the participant is 
under. Figure 7 shows a two second recording 
with a single eye-blink occurrence (highlighted). 
The potential difference between sensors Fp1 and 
Fp2 and their neighbors is increased during the 
duration of the eye blink, which is typically 
between 200 and 400 ms (Yoo et al. 2007). 
 

 

          
 
Fig. 7 A two second recording with a single eye-
blink highlighted, using longitudinal differences 
(a), traverse differences (b), and the earlobes as 
reference (c). Only the relevant channels are 
shown. Finally an amplitude map of this same 
moment (d). 
 
The longitudinal differences (figure 6a) allow easy 
visual identification of the eye blinks as peaks on 
the differences between Fp1 and Fp2 and their 
surrounding electrodes. 
The transverse differences (figure 6b) measures 
the potential differences between Fp1 and Fp2. 
Because both sensors will be triggered 
simultaneously during an eye blink, the eye blinks 
are barely noticeable. Using the earlobes as 
reference (figure 6c), such as the ear lobes, has the 
effect of eye blinks showing up on all channels, 
not just on Fp1 and Fp2. Even though eye blinks 
are easily spotted in this configuration, essential 
data on other channels may be masked. 
The following tables list the occurrences of eye 
blinks while riding on the straight road. Table 4 
shows the measurements for the straight track 
without any billboards. The first minute of this 
data was not usable do to distraction of the 
participant, and has been removed. The has been 
shifted such that the first eye blink occurs at 0 
seconds. 
 
TABLE 4 
Eye blinks occurring while riding on the straight 
road without billboards 

 



 
 
TABLE 5 
Eye blinks occurring while riding on the straight 
road with billboards 

 

 
 
TABLE 6 
Eye blinks occurring while riding on the curved 
without billboards 

 
 
TABLE 7 
Eye blinks occurring while riding on the curved 
with billboards 

 
 
TABLE 8 
Crashes on the curved track 

 
 
ANALYSIS 
 
A. Eye blink frequency in stressful situations 
We first analyzed basic statistical properties. 
Figure 8 shows the distributions of the time 
between the eye blinks. The graph for the curved 
race track without billboards (figure 8c) has been 
clipped. The last 20 seconds of the data showed 
continuous blinking. Although this has been 

 



removed from the distribution, we will include this 
data in the remainder of our analysis. 
All distributions show properties of the Gamma 
distribution, which could be expected (Dekking et 
al 2005). It is immediately obvious that the 
presence of billboards has an effect on the 
emotional state (figures 8a and b). The mean time 
between two eye blinks is much shorter, which is 
to be expected given many more eye blinks in the 
same amount of time. 
 

 

 
 
Fig. 8 The distribution of eye blink intervals 
(seconds) for each of the driving simulations; 
straight road, no billboards (a), straight road, 
with billboards (b), curvy race track, no billboards 
(c) and curvy race track with billboards (d). 
 

 
 

 
 
The same does not happen for the curvy race track, 
though. The distributions are similar, and in fact 
the track without billboards shows a higher count 
of blinks, and a lower mean time between blinks. 
This can only partly be explained to the stress 
experienced of having to steer the vehicle, and 
control the throttle to stay on the track. 
While on the straight road the presence of emotion 
stimulating billboards has an obvious effect, there 
is no significant difference in the perceived 
emotions on the curvy race track. To support this 
notion, we have marked both the billboards and 
crashes onto the eye blink data. If we plot the 
billboards on the data (figure 10b), there appears 
no connection between the location of a billboard 
and the perceived emotion. But if we mark the 
crashes (figure 10c), we see an immediate increase 
in eye blink frequency after a crash, indicating a 
strong correlation between the two. This shows 
that in fact the crash, even though only simulated, 
causes an immediate emotional response. This still 
leaves the issue of the higher eye blink on the 
curvy track without billboards as opposed to the 
one with billboards. This is probably due to the 
fact that more crashes occurred during this run, as 
well as the fact that the participant still had to 
adapt to the curvy track, and was more 
emotionally tense when driving the first few laps. 
 
Fig. 9 Projected eye blinks per minute for the 
straight road, without billboards (a), and with 
billboards (b). The billboards are marked in red. 

 

 



(a) 

 
(b) 

 
(c) 

Fig. 10 Projected eye blinks per minute for the 
curvy race track without billboards (a), and with 
billboards (b and c). The billboards are shown as 
markers in (b), the crashes are shown as markers 
in (c). 
 
B. Brain activity under mental load 
Figure 7 shows an EEG pattern of the participant 
during experiment 3, while passing through a 
sharp turn in the race track. The amount of 
variation in the EEG signals seems to be related to 
the psychophysical load of the steering task at the 
moment. Sharp curves in the racetrack require 
more cognitive processing and exertion of physical 
control than gentle ones. For instance gentle 
curves can be completed without potentially 
becoming uncontrollable. Some of the curves in 
the race track show activity such as in figure 7, 
while others do not show any increase in brain 
activity, and the EEG patterns look like those in 
figure 5. Another noticeable situation is the EEG 
patternthat emerges when the participant loses 
control over the race car and it crashes into the 
sidewall of the track. The EEG pattern then 
reflects all the psychophysical activity that must 
be done in order to get back in control of the race 
car. 
The second set of experiments that were 
conducted also revealed some EEG patterns of 
interest. From figure 13 and 14 the difference is 
visible between the participant’s brain activity 
when his eyes are open and when they are closed. 
 

 
Fig. 11 EEG pattern when driving through a curve 
that required relatively much control adjustments 
 

 
 
Fig. 12 A 10 second EEG clip showing brain 
activity whilethe car becomes uncontrollable and 
crashes (a) and during recovery (b). 
 

 
Fig. 13 EEG pattern from experiment 7 – the 
participant has his eyes open and is asked to 
calculate 90 X 6. 
 

 
 
Fig. 14 EEG pattern from experiment 8 – the 
participant has his eyes closed and is asked to 
calculate 19 X 8. 
 

 



In both cases the participant was asked to perform 
relatively simple calculations, which were done 
correctly. However, it appears that the brain is 
much busier when the eyes are opened, possibly 
because it is engaged in subconsciously processing 
what the eyes see, even when the participant’s 
attention is not focused on his surroundings. It is 
interesting to notice that the occipital lobe 
(responsible for vision) activates when the 
participants eyes opened briefly (figure 15). 
Another observation was the activation of the left 
frontal lobe. Earlier studies show that exact math 
is mostly done in the left frontal part of the brain 
(Spelke et al. 1999). Figure 16 shows a time lapse 
of 4 amplitude maps 8ms apart. 
 

 
Fig. 15 Brain activity after opening the eyes, 
clearly showing activity in the occipital lobe. 
 

 

 
Fig. 16 Brain activity during performing 
mathematical exercises, clearly showing activity 
in the left frontal lobe. Each map is taken 8 ms 
apart. 
 
RESULTS 
 
There seems to be an obvious connection between 
eye blink frequency and the perceived level of 
stress. Both artificially triggered emotional 
responses by using billboards, and more natural 
emotional responses occurring after crashing the 
car in the drive simulator cause a temporary 
increase in the eye blink frequency. Unfortunately 
the results from the classification of emotions 
from the recorded EEG signals cannot be strongly 
correlated with the data. The participants were not 
interviewed or otherwise asked to state which 

emotions they perceived during specific event of 
the experiment. Additionally, short dummy 
sessions could be held on the straight track to 
make the participant more comfortable the 
experiment. 
In the second set of experiments we noticed that 
specific brain areas were being activated after 
certainevents. The occipital lobe was highly active 
when opening the eyes and the frontal lobe was 
highly active when doing the mental calculation. 
Although this is expected according to other 
studies (ie. Spelke and Dehaene), this reseach is 
not able to connect stated brain areas with 
mentioned events. This would require a different 
experiment set-up A weakness of using EEG 
signals for combined eye blink and brain activity 
detection is that both occlude each other. Firstly, 
only relatively strong electric potential at the outer 
edge of the scalp only are recorded. The origins of 
the emotional brain however are not limited to the 
outer edge alone. Secondly, the generated 
electrical potential from brain activity, and the 
electrical potential from muscle activity from the 
eye lids tend to occlude each other. 
To remedy these problems, we would recommend 
using separate eye lid sensors. This allows much 
more accurate eye blink detection and removal of 
these artifacts from the EEG data. 
 
CONCLUSION 
 
Our results show that there is a strong correlation 
between eye blink frequency and emotional stress. 
This was even more apparent during more 
confronting situations, such as the simulated car 
crashes Although the temporal increase in eye 
blink frequency can already be used as a measure 
of stress, our method is not accurate enough to be 
used in commercial applications. Further isolating 
the eye blink from the EEG signal using other 
features and possible enhanced stress detection 
using additional sensors, for example attached to 
the eye lids, are interesting research topics. The 
detection of eye blinks in an EEG signal is easily 
done visually, using the longitudal differences of 
sensors Fp1 and Fp2, presenting eye blinks as 
unique peaks. When displaying the amplitude 
map, a clear active area of the prefrontal cortex is 
shown. Automatic detection of eye blinks using 
these two characteristics possible. During the 
analysis of the mental calculation we noticed an 
active left frontal lobe. This confirms the theory of 

 



increased brain activity in the left frontal lobe 
during mental mathematical processing, as stated 
by Spelke and Dehaene. We further noticed 
significant less variation in the EEG signal when 
the subject’s eyes were closed and detected a spike 
in the occipital lobe when opening the eyes, 
indicating increased visual processing. This 
confirms that brain activity is heavily influenced 
by visual information. We noticed no correlation 
of math performance and eyes closed or open. 
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